Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2312747, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531112

ABSTRACT

Herein, a high-quality gate stack (native HfO2 formed on 2D HfSe2) fabricated via plasma oxidation is reported, realizing an atomically sharp interface with a suppressed interface trap density (Dit ≈ 5 × 1010 cm-2 eV-1). The chemically converted HfO2 exhibits dielectric constant, κ ≈ 23, resulting in low gate leakage current (≈10-3 A cm-2) at equivalent oxide thickness ≈0.5 nm. Density functional calculations indicate that the atomistic mechanism for achieving a high-quality interface is the possibility of O atoms replacing the Se atoms of the interfacial HfSe2 layer without a substitution energy barrier, allowing layer-by-layer oxidation to proceed. The field-effect-transistor-fabricated HfO2/HfSe2 gate stack demonstrates an almost ideal subthreshold slope (SS) of ≈61 mV dec-1 (over four orders of IDS) at room temperature (300 K), along with a high Ion/Ioff ratio of ≈108 and a small hysteresis of ≈10 mV. Furthermore, by utilizing a device architecture with separately controlled HfO2/HfSe2 gate stack and channel structures, an impact ionization field-effect transistor is fabricated that exhibits n-type steep-switching characteristics with a SS value of 3.43 mV dec-1 at room temperature, overcoming the Boltzmann limit. These results provide a significant step toward the realization of post-Si semiconducting devices for future energy-efficient data-centric computing electronics.

2.
J Am Chem Soc ; 145(44): 24349-24357, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37883799

ABSTRACT

Understanding the interplay between the surface structure and the passivation materials and their effects associated with surface structure modification is of fundamental importance; however, it remains an unsolved problem in the perovskite passivation field. Here, we report a surface passivation principle for efficient perovskite solar cells via a facet-dependent passivation phenomenon. The passivation process selectively occurs on facets, which is observed with various post-treatment materials with different functionality, and the atomic arrangements of the facets determine the alignments of the passivation layers. The profound understanding of facet-dependent passivation leads to the finding of 2-amidinopyridine hydroiodide as the material for a uniform and effective passivation on both (100) and (111) facets. Consequently, we achieved perovskite solar cells with an efficiency of 25.10% and enhanced stability. The concept of facet-dependent passivation can provide an important clue on unidentified passivation principles for perovskite materials and a novel means to enhance the performance and stability of perovskite-based devices.

3.
Nanomaterials (Basel) ; 13(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37446462

ABSTRACT

Surface undulation was formed while growing InGaN/GaN multi-quantum wells on a semi-polar m-plane (1-100) sapphire substrate. Two distinct facets, parallel to 112¯2 and 011¯1, were formed in the embedded multi-quantum wells (MQWs). The structural and luminescence characteristics of the two facets were investigated using transmission electron microscopy equipped with cathodoluminescence. Those well-defined quantum wells, parallel and slanted to the growth plane, showed distinct differences in indium incorporation from both the X-ray yield and the contrast difference in annular darkfield images. Quantitative measurements of concentration in 011¯1 MQWs show an approximately 4 at% higher indium incorporation compared to the corresponding 112¯2 when the MQWs were formed under the same growth condition.

4.
Micron ; 172: 103487, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37285687

ABSTRACT

Using a monochromator in transmission electron microscopy, a low-energy-loss spectrum can provide inter- and intra-band transition information for nanoscale devices with high energy and spatial resolutions. However, some losses, such as Cherenkov radiation, phonon scattering, and surface plasmon resonance superimposed at zero-loss peak, make it asymmetric. These pose limitations to the direct interpretation of optical properties, such as complex dielectric function and bandgap onset in the raw electron energy-loss spectra. This study demonstrates measuring the dielectric function of germanium telluride using an off-axis electron energy-loss spectroscopy method. The interband transition from the measured complex dielectric function agrees with the calculated band structure of germanium telluride. In addition, we compare the zero-loss subtraction models and propose a reliable routine for bandgap measurement from raw valence electron energy-loss spectra. Using the proposed method, the direct bandgap of germanium telluride thin film was measured from the low-energy-loss spectrum in transmission electron microscopy. The result is in good agreement with the bandgap energy measured using an optical method.

5.
Nano Lett ; 23(7): 3054-3061, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36930591

ABSTRACT

As the electron mobility of two-dimensional (2D) materials is dependent on an insulating substrate, the nonuniform surface charge and morphology of silicon dioxide (SiO2) layers degrade the electron mobility of 2D materials. Here, we demonstrate that an atomically thin single-crystal insulating layer of silicon oxynitride (SiON) can be grown epitaxially on a SiC wafer at a wafer scale and find that the electron mobility of graphene field-effect transistors on the SiON layer is 1.5 times higher than that of graphene field-effect transistors on typical SiO2 films. Microscale and nanoscale void defects caused by heterostructure growth were eliminated for the wafer-scale growth of the single-crystal SiON layer. The single-crystal SiON layer can be grown on a SiC wafer with a single thermal process. This simple fabrication process, compatible with commercial semiconductor fabrication processes, makes the layer an excellent replacement for the SiO2/Si wafer.

6.
ACS Nano ; 16(12): 20758-20769, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36469438

ABSTRACT

Reversible conversion over multimillion times in bond types between metavalent and covalent bonds becomes one of the most promising bases for universal memory. As the conversions have been found in metastable states, an extended category of crystal structures from stable states via redistribution of vacancies, research on kinetic behavior of the vacancies is highly in demand. However, it remains lacking due to difficulties with experimental analysis. Herein, the direct observation of the evolution of chemical states of vacancies clarifies the behavior by combining analysis on charge density distribution, electrical conductivity, and crystal structures. Site-switching of vacancies of Sb2Te3 gradually occurs with diverged energy barriers owing to their own activation code: the accumulation of vacancies triggers spontaneous gliding along atomic planes to relieve electrostatic repulsion. Studies on the behavior can be further applied to multiphase superlattices composed of Sb2Te3 (2D) and GeTe (3D) sublayers, which represent superior memory performances, but their operating mechanisms were still under debate due to their complexity. The site-switching is favorable (suppressed) when Te-Te bonds are formed as physisorption (chemisorption) over the interface between Sb2Te3 (2D) and GeTe (3D) sublayers driven by configurational entropic gain (electrostatic enthalpic loss). Depending on the type of interfaces between sublayers, phases of the superlattices are classified into metastable and stable states, where the conversion could only be achieved in the metastable state. From this comprehensive understanding on the operating mechanism via kinetic behaviors of vacancies and the metastability, further studies toward vacancy engineering are expected in versatile materials.

7.
Microsc Microanal ; 28(1): 53-60, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35177141

ABSTRACT

In situ liquid cell transmission electron microscopy (TEM) is a very useful tool for investigating dynamic solid­liquid reactions. However, there are challenges to observe the early stages of spontaneous solid­liquid reactions using a closed-type liquid cell system, the most popular and simple liquid cell system. We propose a graphene encapsulation method to overcome this limitation of closed-type liquid cell TEM. The solid and liquid are separated using graphene to suspend the reaction until the graphene layer is destroyed. Graphene can be decomposed by the high-energy electron beam used in TEM, allowing the reaction to proceed. Fast dissolution of graphene-capped copper nanoparticles in an FeCl3 solution was demonstrated via in situ liquid cell TEM at 300 kV using a cell with closed-type SiNx windows.

8.
Nano Lett ; 21(23): 9909-9915, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34843258

ABSTRACT

While the orientation-dependent properties of semiconductor nanowires have been theoretically predicted, their study has long been overlooked in many fields owing to the limits to controlling the crystallographic growth direction of nanowires (NWs). We present here the orientation-controlled growth of single-crystalline germanium (Ge) NWs using a self-catalytic low-pressure chemical vapor deposition process. By adjusting the growth temperature, the orientation of growth direction in GeNWs was selectively controlled to the ⟨110⟩, ⟨112⟩, or ⟨111⟩ directions on the same substrate. The NWs with different growth directions exhibit distinct morphological features, allowing control of the NW morphology from uniform NWs to nanoribbon structures. Significantly, the VLS-based self-catalytic growth of the ⟨111⟩ oriented GeNW suggests that NW growth is possible for single elementary materials even without an appropriate external catalyst. Furthermore, these findings could provide opportunities to investigate the orientation-dependent properties of semiconductor NWs.

9.
Sci Rep ; 11(1): 6347, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33737675

ABSTRACT

Nd2Fe14B and Nd2-xDyxFe14B (x = 0.25, 0.50) particles were prepared by the modified co-precipitation followed by reduction-diffusion process. Bright field scanning transmission electron microscope (BF-STEM) image revealed the formation of Nd-Fe-B trigonal prisms in [- 101] viewing zone axis, confirming the formation of Nd2Fe14B/Nd2-xDyxFe14B. Accurate site for the Dy substitution in Nd2Fe14B crystal structure was determined as "f" site by using high-angle annular dark field scanning transmission electron microscope (HAADF-STEM). It was found that all the "g" sites are occupied by the Nd, meanwhile Dy occupied only the "f" site. Anti-ferromagnetic coupling at "f" site decreased the magnetic moment values for Nd1.75Dy0.25Fe14B (23.48 µB) and Nd1.5Dy0.5Fe14B (21.03 µB) as compared to Nd2Fe14B (25.50 µB). Reduction of magnetic moment increased the squareness ratio, coercivity and energy product. Analysis of magnetic anisotropy at constant magnetic field confirmed that "f" site substitution did not change the patterns of the anisotropy. Furthermore, magnetic moment of Nd2Fe14B, Nd2-xDyxFe14B, Nd ("f" site), Nd ("g" site) and Dy ("f" site) was recorded for all angles between 0° and 180°.

10.
ACS Appl Mater Interfaces ; 12(35): 39479-39486, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32805957

ABSTRACT

The low sheet resistance and high optical transparency of silver nanowires (AgNWs) make them a promising candidate for use as the flexible transparent electrode of light-emitting diodes (LEDs). In a perovskite LED (PeLED), however, the AgNW electrode can react with the overlying perovskite material by redox reactions, which limit the electroluminescence efficiency of the PeLED by causing the degradation of and generating defect states in the perovskite material. In this study, we prepared Ag-Ni core-shell NW electrodes using the solution-electroplating technique to realize highly efficient PeLEDs based on colloidal formamidinium lead bromide (FAPbBr3) nanoparticles (NPs). Solvated Ni ions from the NiSO4 source were deposited onto the surface of AgNW networks in three steps: (i) cathodic cleaning, (ii) adsorption of the Ni-ion complex onto the AgNW surface, and (iii) uniform electrodeposition of Ni. An ultrathin (∼3.5 nm) Ni layer was uniformly deposited onto the AgNW surface, which exhibited a sheet resistance of 16.7 Ω/sq and an optical transmittance of 90.2%. The Ag-Ni core-shell NWs not only increased the work function of the AgNW electrode, which facilitated hole injection into the emitting layer, but also suppressed the redox reaction between Ag and FAPbBr3 NPs, which prevented the degradation of the emitting layer and the generation of defect states in it. The resulting PeLEDs based on FAPbBr3 NPs with the Ag-Ni core-shell NWs showed high current efficiency of 44.01 cd/A, power efficiency of 35.45 lm/W, and external quantum efficiency of 9.67%.

11.
Nanoscale ; 12(13): 6991-6999, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32080697

ABSTRACT

MoSe2 is an attractive transition-metal dichalcogenide with a two-dimensional layered structure and various attractive properties. Although MoSe2 is a promising negative electrode material for electrochemical applications, further investigation of MoSe2 has been limited, mainly by the lack of MoSe2 mass-production methods. Here, we report a rapid and ultra-high-yield synthesis method of obtaining MoSe2 nanosheets with high crystallinity and large grains by ampoule-loaded chemical vapor deposition. Application of high pressure to an ampoule-type quartz tube containing MoO3 and Se powders initiated rapid reactions that produced vertically oriented MoSe2 nanosheets with grain sizes of up to ∼100 µm and yields of ∼15 mg h-1. Spectroscopy and microscopy characterizations confirmed the high crystallinity of the obtained MoSe2 nanosheets. Transistors and lithium-ion battery cells fabricated with the synthesized MoSe2 nanosheets showed good performance, thereby further indicating their high quality. The proposed simple scalable synthesis method can pave the way for diverse electrical and electrochemical applications of MoSe2.

12.
Small ; 16(6): e1905000, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31916688

ABSTRACT

The metallic 1T phase of WS2 (1T-WS2 ), which boosts the charge transfer between the electron source and active edge sites, can be used as an efficient electrocatalyst for the hydrogen evolution reaction (HER). As the semiconductor 2H phase of WS2 (2H-WS2 ) is inherently stable, methods for synthesizing 1T-WS2 are limited and complicated. Herein, a uniform wafer-scale 1T-WS2 film is prepared using a plasma-enhanced chemical vapor deposition (PE-CVD) system. The growth temperature is maintained at 150 °C enabling the direct synthesis of 1T-WS2 films on both rigid dielectric and flexible polymer substrates. Both the crystallinity and number of layers of the as-grown 1T-WS2 are verified by various spectroscopic and microscopic analyses. A distorted 1T structure with a 2a0 × a0 superlattice is observed using scanning transmission electron microscopy. An electrochemical analysis of the 1T-WS2 film demonstrates its similar catalytic activity and high durability as compared to those of previously reported untreated and planar 1T-WS2 films synthesized with CVD and hydrothermal methods. The 1T-WS2 does not transform to stable 2H-WS2 , even after a 700 h exposure to harsh catalytic conditions and 1000 cycles of HERs. This synthetic strategy can provide a facile method to synthesize uniform 1T-phase 2D materials for electrocatalysis applications.

13.
Appl Microsc ; 50(1): 22, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33580423

ABSTRACT

In-situ transmission electron microscopy (TEM) holders that employ a chip-type specimen stage have been widely utilized in recent years. The specimen on the microelectromechanical system (MEMS)-based chip is commonly prepared by focused ion beam (FIB) milling and ex-situ lift-out (EXLO). However, the FIB-milled thin-foil specimens are inevitably contaminated with Ga+ ions. When these specimens are heated for real time observation, the Ga+ ions influence the reaction or aggregate in the protection layer. An effective method of removing the Ga residue by Ar+ ion milling within FIB system was explored in this study. However, the Ga residue remained in the thin-foil specimen that was extracted by EXLO from the trench after the conduct of Ar+ ion milling. To address this drawback, the thin-foil specimen was attached to an FIB lift-out grid, subjected to Ar+ ion milling, and subsequently transferred to an MEMS-based chip by EXLO. The removal of the Ga residue was confirmed by energy dispersive spectroscopy.

14.
ACS Appl Mater Interfaces ; 12(2): 3104-3113, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31845581

ABSTRACT

The size of the advanced Cu interconnects has been significantly reduced, reaching the current 7.0 nm node technology and below. With the relentless scaling-down of microelectronic devices, the advanced Cu interconnects thus requires an ultrathin and reliable diffusion barrier layer to prevent Cu diffusion into the surrounding dielectric. In this paper, amorphous carbon (a-C) layers of 0.75-2.5 nm thickness have been studied for use as copper diffusion barriers. The barrier performance and thermal stability of the a-C layers were evaluated by annealing Cu/SiO2/Si metal-oxide-semiconductor (MOS) samples with and without an a-C diffusion barrier at 400 °C for 10 h. Microstructure and elemental analysis performed by transmission electron microscopy (TEM) and secondary ion mass spectroscopy showed that no Cu diffusion into the SiO2 layer occurred in the presence of the a-C barrier layer. However, current density-electric field and capacitance-voltage measurements showed that 0.75 and 2.5 nm thick a-C barriers behave differently because of different microstructures being formed in each thickness after annealing. The presence of the 0.75 nm thick a-C barrier layer considerably improved the reliability of the fabricated MOS samples. In contrast, the reliability of MOS samples with a 2.5 nm thick a-C barrier was degraded by sp2 clustering and microstructural change from amorphous phase to nanocrystalline state during annealing. These results were confirmed by Raman spectroscopy, X-ray photoelectron spectroscopy and TEM analysis. This study provides evidence that an 0.75 nm thick a-C layer is a reliable diffusion barrier.

15.
Sci Rep ; 9(1): 20132, 2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31882921

ABSTRACT

An amorphous TaxMnyOz layer with 1.0 nm thickness was studied as an alternative Cu diffusion barrier for advanced interconnect. The thermal and electrical stabilities of the 1.0-nm-thick TaxMnyOz barrier were evaluated by transmission electron microscopy (TEM) and current density-electric field (J-E) and capacitance-voltage (C-V) measurements after annealing at 400 °C for 10 h. X-ray photoelectron spectroscopy revealed the chemical characteristics of the TaxMnyOz layer, and a tape peeling test showed that the TaxMnyOz barrier between the Cu and SiO2 layers provided better adhesion compared to the sample without the barrier. TEM observation and line profiling measurements in energy-dispersive X-ray spectroscopy after thermal annealing revealed that Cu diffusion was prevented by the TaxMnyOz barrier. Also, the J-E and C-V measurements of the fabricated metal-oxide-semiconductor sample showed that the TaxMnyOz barrier significantly improved the electrical stability of the Cu interconnect. Our results indicate that the 1.0-nm-thick TaxMnyOz barrier efficiently prevented Cu diffusion into the SiO2 layer and enhanced the thermal and electrical stability of the Cu interconnect. The improved performance of the TaxMnyOz barrier can be attributed to the microstructural stability achieved by forming ternary Ta-Mn-O film with controlled Ta/Mn atomic ratio. The chemical composition can affect the atomic configuration and density of the Ta-Mn-O film, which are closely related to the diffusion behavior. Therefore, the 1.0-nm-thick amorphous TaxMnyOz barrier is a promising Cu diffusion barrier for advanced interconnect technology.

16.
Microsc Res Tech ; 82(6): 849-855, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30689247

ABSTRACT

Study on recrystallization of deformed metal is important for practical industrial applications. Most of studies about recrystallization behavior focused on the migration of the high-angle grain boundaries, resulting in lack of information of the kinetics of the low angle grain boundary migration. In this study, we focused on the migration of the low angle grain boundaries during recrystallization process. Pure nickel deformed by shot peening which induced plastic deformation at the surface was investigated. The surface of the specimen was prepared by mechanical polishing using diamond slurry and colloidal silica down to 0.02 µm. Sequential heat treatment under a moderate annealing temperature facilitates to observe the migration of low angle grain boundaries. The threshold energy for low angle boundary migration during recrystallization as a function of misorientation angle was evaluated using scanning electron microscopy techniques. A combination of electron channeling contrast imaging and electron backscatter diffraction was used to measure the average dislocation density and a quantitative estimation of the stored energy near the boundary. It was observed that the migration of the low angle grain boundaries during recrystallization was strongly affected by both the stored energy of the deformed matrix and the misorientation angle of the boundary. Through the combination of electron channeling contrast imaging and electron backscatter diffraction, the threshold stored energy for the migration of the low angle grain boundaries was estimated as a function of the boundary misorientation.

17.
Microsc Res Tech ; 82(1): 39-46, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30295355

ABSTRACT

The quantity of the crystalline phases present in a nanomaterial is an important parameter that governs the correlation between its properties and microstructure. However, quantification of crystallinity in nanoscale-level applications by conventional methods (Raman spectroscopy and X-ray diffraction) is difficult because of the spatial limitations of sampling. Therefore, we propose a technique that involves using energy-filtered electron diffraction in transmission electron microscopy which offers improved spatial resolution. The degree of crystallinity (DOC) was calculated by separating the crystalline and amorphous intensities from the total intensity histogram acquired by the azimuthal averaging of the zero-loss filtered signals from electron diffraction. In order to validate the method, it was demonstrated that the DOC calculated by zero-loss filtered electron diffraction was consistent with the DOC measured by the area ratio using an amorphous silicon on crystalline silicon standard sample. In addition, the results obtained from zero-loss filtered and conventional electron diffractions were compared. The zero-loss filtered electron diffraction successfully provided the reliable results of the crystallinity quantification. In contrast, the DOC measured using conventional electron diffraction yielded extremely variable results. Therefore, our results provide a crystallinity quantification technique that can extract quantitative information about crystallinity of nanoscale devices by using zero-loss filtered electron diffraction with better reliability than conventional electron diffraction. RESEARCH HIGHLIGHTS: The degree of crystallinity can be measured by separating the crystalline and amorphous intensities from the total intensity histogram acquired by the azimuthal averaging of the zero-loss filtered signals from selected area electron diffraction.

18.
ACS Nano ; 13(2): 1127-1135, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30592611

ABSTRACT

It is widely accepted in condensed matter physics and material science communities that a single-oriented overlayer cannot be grown on an amorphous substrate because the disordered substrate randomizes the orientation of the seeds, leading to polycrystalline grains. In the case of two-dimensional materials such as graphene, the large-scale growth of single-oriented materials on an amorphous substrate has remained unsolved. Here, we demonstrate experimentally that the presence of uniformly oriented graphene seeds facilitates the growth of millimeter-scale single-oriented graphene with 3 × 4 mm2 on palladium silicide, which is an amorphous thin film, where the uniformly oriented graphene seeds were epitaxially grown. The amorphous palladium silicide film promotes the growth of the single-oriented growth of graphene by causing carbon atoms to be diffusive and mobile within and on the substrate. In contrast to these results, without the uniformly oriented seeds, the amorphous substrate leads to the growth of polycrystalline graphene grains. This millimeter-scale single-oriented growth from uniformly oriented seeds can be applied to other amorphous substrates.

19.
Appl Microsc ; 49(1): 6, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-33580325

ABSTRACT

Focused ion beam method, which has excellent capabilities such as local deposition and selective etching, is widely used for micro-electromechanical system (MEMS)-based in situ transmission electron microscopy (TEM) sample fabrication. Among the MEMS chips in which one can apply various external stimuli, the electrical MEMS chips require connection between the TEM sample and the electrodes in MEMS chip, and a connected deposition material with low electrical resistance is required to apply the electrical signal. Therefore, in this study, we introduce an optimized condition by comparing the electrical resistance for C-, Pt-, and W- ion beam induced deposition (IBID) at 30 kV and electron beam induced deposition (EBID) at 1 and 5 kV. The W-IBID at 30 kV with the lowest electrical resistance of about 30 Ω shows better electrical properties than C- and Pt-IBID electrodes. The W-EBID at 1 kV has lower electrical resistance than that at 5 kV; thus, confirming its potential as an electrode. Therefore, for the materials that are susceptible to ion beam damage, it is recommended to fabricate electrical connections using W-EBID at 1 kV.

20.
Materials (Basel) ; 11(10)2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30326579

ABSTRACT

Corrosion resistance of Zr that has been added to an Al alloy (U1070) is higher than that of a commercial Al alloy (A1070). A decreasing number and size of Al3Fe intermetallic particles (IMPs) were observed by electron microprobe analysis and transmission electron microscopy. Based on the numerical corrosion simulation, it was confirmed that decreasing the number and size of IMPs was favorable for improving the corrosion resistance of the Al alloy due to the reduction of the galvanic effect. In addition, Al3Zr was found to be insignificant in promoting galvanic corrosion within the Al matrix. Thus, Zr is an advantageous alloying element for improving the corrosion resistance of the Al alloy.

SELECTION OF CITATIONS
SEARCH DETAIL
...